More on a trace inequality in quantum information theory

نویسنده

  • Naresh Sharma
چکیده

It is known that for a completely positive and trace preserving (cptp) map N , Tr exp{log σ + N †[logN (ρ) − logN (σ)]} 6 Tr ρ when ρ, σ, N (ρ), and N (σ) are strictly positive. We state and prove a relevant version of this inequality for the hitherto unaddressed case of these matrices being nonnegative. Our treatment also provides an alternate proof for the strictly positive case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Block Matrix Inequality quantifying the Monogamy of the Negativity of Entanglement

We convert a conjectured inequality from quantum information theory, due to He and Vidal, into a block matrix inequality and prove a very special case. Given n matrices Ai, i = 1, . . . , n, of the same size, let Z1 and Z2 be the block matrices Z1 := (AjA ∗ i ) n i,j=1 and Z2 := (A ∗ jAi) n i,j=1. Then the conjectured inequality is (||Z1||1 − TrZ1) + (||Z2||1 − TrZ2) ≤ ∑ i̸=j ||Ai||2||Aj ||2 ...

متن کامل

Fe b 20 03 Inequalities for trace norms of 2 × 2 block matrices

This paper derives an inequality relating the p-norm of a positive 2×2 block matrix to the p-norm of the 2×2 matrix obtained by replacing each block by its p-norm. The inequality had been known for integer values of p, so the main contribution here is the extension to all values p ≥ 1. In a special case the result reproduces Hanner’s inequality. A weaker inequality which applies also to non-pos...

متن کامل

Multivariate Trace Inequalities

Abstract We prove several trace inequalities that extend the Golden-Thompson and the Araki-LiebThirring inequality to arbitrarily many matrices. In particular, we strengthen Lieb’s triple matrix inequality. As an example application of our four matrix extension of the Golden-Thompson inequality, we prove remainder terms for the monotonicity of the quantum relative entropy and strong sub-additiv...

متن کامل

Information Geometry and Statistical Inference D

Variance and Fisher information are ingredients of the Cram er-Rao inequality. Fisher information is regarded as a Riemannian metric on a quantum statistical manifold and we choose monotonicity under coarse graining as the fundamental property. The quadratic cost functions are in a dual relation with the Fisher information quantities and they reduce to the variance in the commuting case. The sc...

متن کامل

Schmidt Norms for Quantum States

We consider a family of vector and operator norms which we refer to as Schmidt norms. We show that these norms have several uses in quantum information theory – they can be used to help classify k-positive linear maps (and hence entanglement witnesses), they are useful for approaching the problem of finding non-positive partial transpose bound entangled Werner states, they are related to the qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.00226  شماره 

صفحات  -

تاریخ انتشار 2015